

Mount William Creek Flood Investigation Final Report

Reference: R.M20045.007.01.FinalReport.docx Date: December 2014

Mount William Creek Flood Investigation Final Report

Prepared for: Wimmera Catchment Management Authority

Prepared by: BMT WBM Pty Ltd (Member of the BMT group of companies)

Offices

Brisbane Denver London Mackay Melbourne Newcastle Perth Sydney Vancouver

Document Control Sheet

	Document:	R.M20045.007.01.FinalReport.docx		
BMT WBM Pty Ltd Level 5, 99 King Street Melbourne Vic 3000	Title:	Mount William Creek Flood Investigation Final Report		
Australia PO Box 604	Project Manager:	Joel Leister		
Collins Street West Vic 8007	Author:	Joel Leister		
Tel: +61 3 8620 6100 Fax: +61 3 8620 6105	Client:	Wimmera Catchment Management Authority		
ABN 54 010 830 421	Client Contact:	Jack Purcell and Clare Wilson		
www.bmtwbm.com.au	Client Reference:	WCMA 2012 - 2013 - 017		
Synopsis: This final report documents the methodology and findings of the Mount William Creek Flood Investigation				

REVISION/CHECKING HISTORY

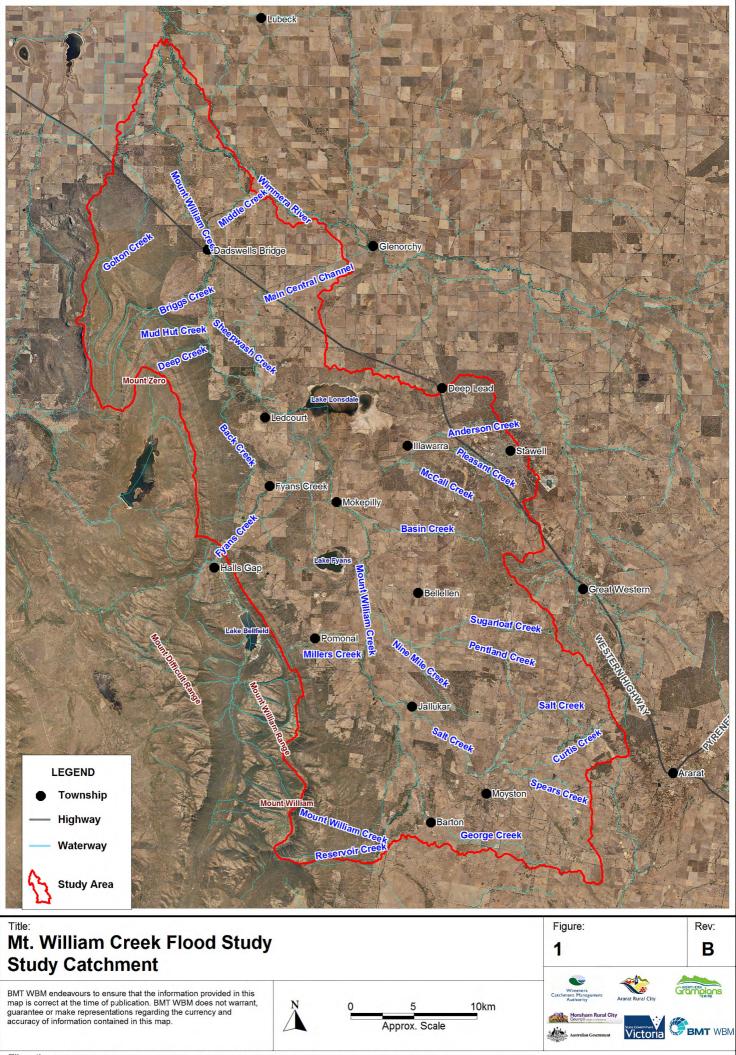
Revision Number	Date	Checked by		Issued by	
0	17/10/2014	DR		JL	
1	11/12/2014	MT	MAG	JL	Totacily.

DISTRIBUTION

Destination					R	levisio	n				
	0	1	2	3	4	5	6	7	8	9	10
WCMA (pdf)	1	1									
WCMA (hardcopy)	0	4									
BMT WBM File	1	1									
BMT WBM Library	1	1									

Executive Summary

This Executive Summary outlines the objectives, methodology and key outcomes of the Mount William Creek Flood Investigation. The investigation provides information on flood levels and flood risk within the Mount William Creek Catchment.


Study Background

Following the widespread flooding across Victoria in September 2010 and January 2011 the Minister for Water on the 19th September 2011 announced funding for the Mount William Creek Flood Investigation. Funding for the investigation was made available through the Victorian Coalition Government's Flood Warning Network - Repair and Improvement initiative and the Australian Government's Natural Disaster Resilience Grants Scheme. The Wimmera Catchment Management Authority (WCMA), in partnership with the Department of Environment and Primary Industries (DEPI), Northern Grampians Shire Council (NGSC), Horsham Rural City Council (HRCC) and Ararat Rural City Council (ARCC) has commissioned this investigation.

The Mount William Creek Catchment has an approximate area of 1,450 km² and is located in Central West Victoria. The catchment includes a number of waterways, namely, Mount William Creek, Salt Creek, Fyans Creek, Pleasant Creek, Sheepwash Creek and Golton Creek along with their tributaries. The Wimmera River heavily influences the downstream reaches of the catchment. The majority of the catchment is used for agricultural purposes, predominately grazing. There are several townships within the catchment including Pomonal, Moyston, Stawell, Dadswells Bridge and Halls Gap (refer to Figure 1). However, whilst the township of Halls Gap is located within the Mount William Creek catchment, it will not be mapped as part of the current study as flood mapping has already been undertaken as part of the Halls Gap Flood Study (Water Technology, 2008). The catchment was subject to extensive flooding during January 2011, which emphasised the need for improved understanding of the flood behaviour. The WCMA engaged BMT WBM Pty Ltd (BMT WBM) to undertake the flood investigation of the catchment.

Filepath: T:\M20045.JL.MtWilliamCkFS\MapInfo\Drawings\R.M20045.007.01.FinalReport\MtW_FigES1_Catchment_RevB.WOR

Key Objectives

The key objectives of this study are to:

- Review available data and historic flood information;
- Engage with the community and stakeholders in order to understand their experiences of flooding and desired outcomes. Data collected from the community will be potentially used as inputs (rainfall) and model outputs and verification (flood behaviour matching event observations);
- Determination and documentation of flood levels, extents, velocities and depths (and thus flood risk) for a range of flood events (5, 10, 20, 50, 100 and 200 year recurrence intervals and Probable Maximum Flood) and including consideration for climate change;
- A review of Ararat Rural City Council, Horsham Rural City Council and Northern Grampians Shire Council Planning Scheme's current Land Subject to Inundation Overlay (LSIO) and Flood Overlay (FO) overlay in the existing planning scheme.;
- Preparation of digital and hard copy floodplain maps for the 1 in 100 year ARI and other flood events showing both floodplain and floodway extents, suitable for incorporation into municipal planning schemes should council deem appropriate;
- Assessment of flood damages;
- Identification and assessment of structural and non-structural mitigation measures to alleviate intolerable flooding risk;
- Costing and assessment of preferred structural mitigation measures;
- Preparation of flood intelligence and consequence information, including maps, for various flood frequency return periods;
- Review and make recommendations regarding the flood warning system within the catchment;
- Provide Ararat Rural City Council, Horsham Rural City Council and Northern Grampians Shire Council with a revised flood response section of the Municipal Emergency Management Plan based upon the flood intelligence derived from the Study;
- Delivery of all flood related data and outputs including fully attributed Victorian Flood Database (VFD) compliant datasets;
- Transparently reporting the outcome of the study together with the process followed and the findings; and
- Engage the community in all stages of the flood investigation to ensure that most appropriate outcomes are achieved.

Data Collection

As part of the Mount William Creek Flood Investigation, datasets and information were obtained from a variety of organisations. The datasets obtained included:

- **Topographic Data** Including LiDAR and Permanent Survey Marks.
- **GIS Data** Including: aerial photography, flood overlays, historical flood extents, cadastral information, planning zones and other government zones.

- Infrastructure Data Including: drainage network details and floodplain control structure details.
- Rainfall and Streamflow Data Including: daily rainfall, pluviograph, stream stage and stream flow records.
- Historic Flood Levels Including: surveyed flood levels and surveyed floor levels.

In addition to collecting data from external sources, site inspections and community surveys were also undertaken as part of the Mount William Creek Flood Investigation.

Stakeholder Engagement

Community consultation was undertaken throughout the development of the Mount William Creek Flood Investigation. The consultation included a series of public meetings and through community surveys. Community meetings were held in Dadswells Bridge, Pomonal and Moyston. These information sessions were well attended by the local community who provided invaluable information on the history of flooding within the catchment. A large amount of reliable evidence of flood behaviour was provided by the community to check the outputs of the Investigation. Over 300 flood photos and 48 flood marks were provided by the local community to document the flooding that occurred during the January 2011 flood event, and other historic flood events within the catchment. The flood information provided by the residents was invaluable in the development of the study outcomes.

The WCMA formed a Steering Committee for the project which consisted of key stakeholders from WCMA, DEPI, GWM Water, Council, VicSES and the local community. The steering committee provided governance and management of the Investigation and ensured that issues important to the Mount William Creek community were properly considered. Throughout the study, regular meetings were with the Steering Committee at which the interim reports and presentations were discussed and issues were resolved.

Flood Model Development

The fully calibrated flood model developed for the Mount William Creek Flood Investigation, to define flood behaviour within the study area and assess mitigation options, incorporates both hydrologic and hydraulic modelling techniques. Flood frequency analyses was undertaken using the FLIKE package to determine the magnitude of predicted peak discharges for a given level of risk or probability. Hydrologic modelling was undertaken using the RORB hydrologic modelling package to determine the rainfall-runoff characteristics of the catchment.

The catchment flows derived from the hydrologic modelling were then used as input flow boundaries for the TUFLOW hydraulic model. The TUFLOW hydraulic model was used to generate the required flood mapping and define the flooding characteristics of the study area.

The flood model was calibrated to the January 2011 flood event and validated against the December 1992 flood event. To assess the impacts of flooding on the Mount William Creek catchment, the flood model was run for the following Annual Recurrence Interval (ARI) events: 5 year, 10 year, 20 year, 50 year, 100 year and 200 year, along with the Probable Maximum Flood (PMF) event.

A key factor influencing the model sensitivity is the starting water levels of the storages, Lake Lonsdale, Lake Bellfield and Lake Fyans. The project steering committee supported

recommendations based on an analysis of historic water levels of storages at times of flood. The adopted starting water levels used for both Lake Belfield and Lake Fyans was full and the current operating level was used for Lake Lonsdale (53,300 ML, 187.12m AHD).

Hydrologic Modelling

Flood Frequency Analysis

Flood frequency analysis (FFA) has been undertaken using the methods outlined in the draft version of Australian Rainfall and Runoff (ARR) Book IV Peak Flow Estimation. FFA of the five gauges within the catchment has been undertaken using the FLIKE software. The results of the FFA for the Lake Lonsdale (Tail Gauge) gauge provided peak flow estimates for a given AEP event for Mount William Creek. The resulting peak flows verses return period at Lake Lonsdale (Tail Gauge) gauge are shown in Table 1.

ARI	Expected Quantile (ML/day)	Expected Quantile (ML/day) 90% Quantile Probability L	
5	1628	1215	2238
10	3242	2284	5011
20	6105	3854	11707
50	13590	6934	37437
100	24576	10415	91644

 Table 1 Mount William Creek at Lake Lonsdale (Tail Gauge): Flood Frequency Analysis

 Results

Hydrologic Modelling

The purpose of the hydrologic modelling was to characterise the catchment's runoff response to rainfall. This modelling produces time-series of discharge data (i.e. hydrographs) and was undertaken using the RORB hydrologic modelling software. The RORB model covered the entire Mount William Creek catchment to its confluence with the Wimmera River; an area of approximately 1,450 km².

To establish a degree of confidence that the hydrologic modelling was suitably representing the runoff behaviour of the catchment, model calibration and validation was undertaken at the four stream gauges within the catchment. The RORB model was calibrated against two flood events and summary statistics were reviewed to assess the fit of the model. The model was then validated against a further two flood events using the calibrated parameters. The RORB model was then used to derive flow hydrographs to provide inputs into the TUFLOW hydraulic model for the required flood events.

Hydrologic analysis of the Mount William Catchment determined design flood hydrographs for the 0.5%, 1%, 2%, 5%, 10% and 20% AEP and the PMF. Extensive effort was put into deriving the most accurate catchment flood response by undertaking detailed hydrological modelling. Site based and regional flood frequency analysis were completed for gauges within the Mount William Creek and used to guide development calibration of a RORB model of the catchment. Initial RORB model parameters resulted in peak design flows that were consistently smaller than the flows derived by the flood frequency analysis methods. Consequently the loss values for the Fyans

Creek and Mokepilly areas were adjusted to improve the comparison between the RORB flows and the flood frequency derived peak flows. The adopted RORB peak flows are presented in Table 2.

Location	Site Flood Frequency Analysis	Regional Flood Frequency Analysis	RORB (Initial) Estimate)	RORB (adjusted loss parameters)
Mt William Creek @ Mokepilly	25,037	21,132	18,230	25,105
Fyans Creek @ Fyans Creek	11,932	14,861	9,850	11,801
Mt William Creek @ Lake Lonsdale (Tail Gauge)	24,576	35,960	24,451	33,076

Table 2 Comparison of 1 in 100 Year Peak Design Flows (ML/day)

Refer to section 4 for a detailed explanation of the method used to calibrate the RORB model. The calibrated RORB model was used to generate design inflow hydrographs for the hydraulic model within the Mount William Catchment.

Hydraulic Modelling

In order to produce flood extents, depths, velocities and other hydraulic properties for the study area a 1D/2D linked hydraulic model was developed using TUFLOW. The floodplain was represented in the 2D domain with drainage and hydraulic structures modelled as 1D elements as required. The townships of Dadswells Bridge, Moyston and Pomonal modelled at a higher resolution than the surrounding floodplain by incorporating a fine grid 2D domain into the model. The model covers the entire Mount William Creek catchment.

The Mount William Creek TUFLOW model underwent a calibration process to fit the model to the observed data. The TUFLOW model was calibrated to the January 2011 flood event and validated against the December 1992 flood event. The results demonstrated that the flood model has been effectively calibrated and is suitable for undertaking modelling of existing conditions and flood mitigation scenarios.

January 2011 design flood estimates calibrated well with flood photos and flood levels for the Dadswells Bridge, St Helens Plains and areas downstream of Lake Lonsdale. Upstream of Lake Lonsdale highlighted significant discrepancies between observed data and initial design flood estimates. The areas of Stawell, Moyston, Jallukar and Pomonal were of particular concern. There was not enough flooding along Salt Creek and Mount William Creek resulting in lower flood heights and smaller flood extents in the vicinity of Moyston and Jallukar than that observed during January 2011. Several examples of where this occurred are provided in section 5.3.4.4 of this report.

Flood marks and photographs collected in the Jallukar region clearly highlighted the initial calibration of the January 2011 flood event was not adequately reproducing the flooding extents. Figure 1 shows the initial calibration (shown in red) compared with the final calibration (shown in blue). The initial model calibration shows flooding confined to Mount William Creek which does not extend into the surrounding floodplain. However flood photos and flood marks collected (pink dots) for the region show significant flooding in the area during the January 2011 flood event. Refer to figure 2 for photo 1 and 2. The location of where these photos were taken is shown in figure 1.

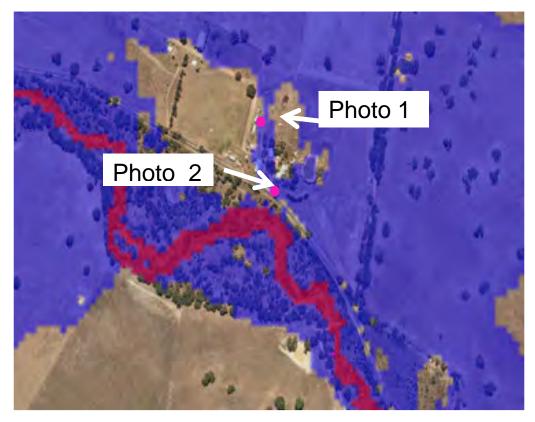


Figure 2 Comparison between initial and final January 2011 calibrations - Jallukar

Figure 3 Flooding of a property on Ararat – Halls Gap Road, Jallukar (left photo 1, right photo 2)

When calibrating the hydraulic model up stream of Lake Lonsdale more weight was applied to the photographs and flood marks rather than the stream gauge records. During large flood events such as the January 2011 event, stream gauge data for Mokepilly, Fyans Creek and Mount William tail gauge was deemed not accurate. As shown in Figure 4, Figure 5 and Figure 6, during large flood events flood events floodwater was found to break out of these waterways upstream of the gauges, bypassing the stream gauge. During large flood events the stream record for these gauges is not representative of the flood behaviour.

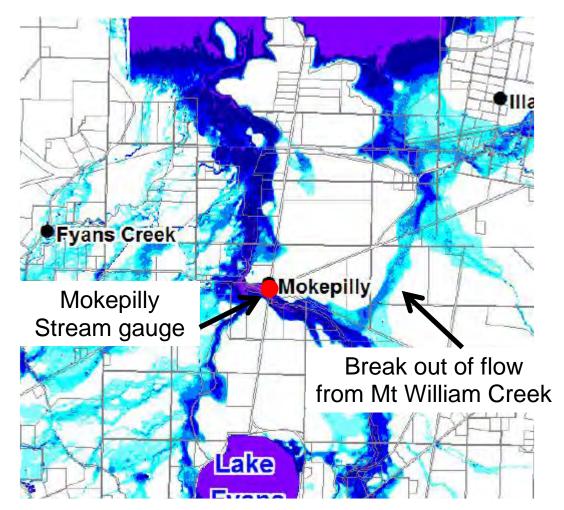


Figure 4 Map of the Mount William Creek 100 year flood extent showing floodwater breaking out of Mt William Creek upstream of the gauge, bypassing the Mokepilly stream gauge.

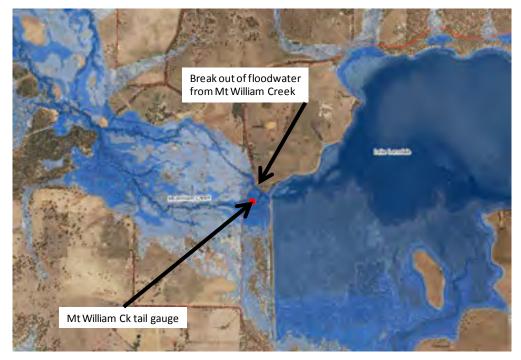


Figure 5 Map of the Mount William Creek 100 year flood extent showing floodwater breaking out of Mt William Creek upstream of the gauge, bypassing the Mount William Creek tail gauge.

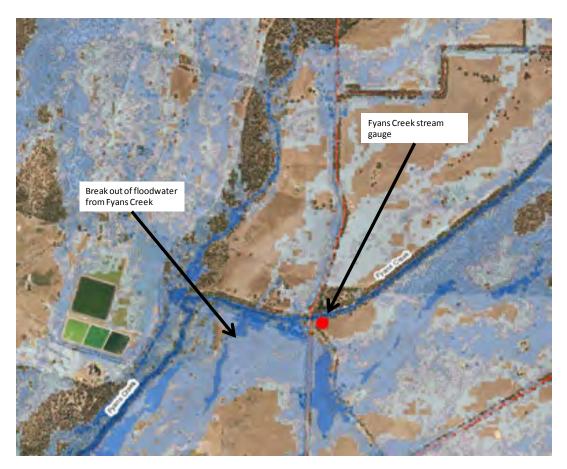


Figure 6 Map of the 100 year flood extent showing floodwater breaking out of Fyans Creek upstream of the gauge, bypassing the Fyans Creek stream gauge.

A number of changes were made to improve the calibration so that better agreement could be achieved with flood marks captured and flood photos collected during the January 2011 event, refer to table 2 for a comparison between the recorded and design peak flows. The amendment of the hydraulic model calibration parameters resulted in increased flow along Mount William Creek upstream of Lake Lonsdale which ultimately result in flood extent and flood depths that better reflect survey marks and flood photography of 2011 event. Although changes to more acceptable values resulted in very poor calibration at Mokepilly gauge, the resultant flood extent and flood levels is deemed acceptable by the project team given that during 100 year flood event; stream gauge records are not representative of flood behaviour in the Mt William Catchment. Refer to section 10.3.4.4 for recommendations to improve the stream gauge network to be more accurate during flood events.


Location	Recorded Peak	Modelled Peak
Mt William Creek @ Mokepilly	7,160	38,991
Fyans Creek @ Fyans Creek	6,339	3,070
Mt William Creek @ Lake Lonsdale (Tail Gauge)	35,556	46,250

Table 3 Comparison of Peak Design Flows for January 2011 flood event (ML/day)

Existing Conditions Flood Mapping and Results

The flood model was run for the 5 year, 10 year, 20 year, 50 year, 100 year and 200 year ARI design flood events (existing conditions) along with the PMF event. For each of these design flood events a suite of flood mapping outputs was generated including: flood depth, flood level, flood velocity, flood hazard and flood affected properties and buildings. Existing conditions peak flood depth for the 100 year ARI event is presented in Figure 7.

Existing Conditions Flood Damages Assessment

The existing conditions flood damages were assessed using a combination of the Rapid Appraisal Method (RAM) and ANUFLOOD methods, both widely adopted throughout Victoria. The ANUFLOOD method was adopted to estimate potential building damages while the RAM method was used to estimate potential agricultural and infrastructure damages.

Flood damages assessments enable floodplain managers and decision makers to gain an understanding of the monetary magnitude of assets under threat from flooding. The information determined in the damages assessment is also used to inform the selection of mitigation measures via a benefit cost analysis. The results of the flood modelling indicated that during the 1% AEP event, 12 properties experience above floor flooding, as shown in Table 4. The existing conditions Average Annual Damages for the Mount William Creek catchment were calculated to be \$1,624,200. However, agricultural damage and road infrastructure damage account for 56% and 34% of the total damage respectively.

Event ARI	No of Properties Inundated	No. of properties with Above Floor Flooding
PMF	41	35
200y	28	13
100y	24	12
50y	19	10
20y	13	7
10y	4	3
5y	4	2

Table 4 Properties flooded and above floor flooding against ARI event

Flood Management Options Assessment

Through consultation with the community, emergency management authorities and other stakeholders, an understanding of the major factors that influence flood risk in the Mount William Creek catchment were identified. This understanding was further enhanced through computer flood modelling and mapping undertaken as part of the investigation. These factors relate to the physical characteristics of the floodplain that contribute to flood risk in the Mount William Creek catchment and the factors that hamper the community's ability to manage the impact of flooding. The major factors are:

- The locations of many of the towns, including Dadswells Bridge, Pomonal and Moyston, are on the banks of various known waterways that are subject to flooding;
- Limited road access through the parts of the Mount William Creek catchment during times of flood;
- The steep upper catchment resulting in fast flood responses from heavy rainfall. Flooding is generally fast flowing but confined to recognised flow paths

i

- The flat lower catchment results in widespread flooding (flood extents are wide); floodwaters are generally slower in velocity and more likely to simply 'pond' on the floodplain.
- Numerous storages within the catchment have a significant impact on the timing and magnitude of the flood peaks throughout the catchment
- The limited rain and streamflow gauges within the catchment limit the ability for the community and emergency services to respond to a flood event. Flood warning is designed more for the towns downstream on the Wimmera River, rather than the Mount William Creek catchment. Flood warning in the upper reaches of any catchment is challenging due to the rapid response of the upper catchment.

In order to address and manage these factors that contribute to the flood risk in the Mount William Creek catchment, a comprehensive flood management options assessment was undertaken, including both structural and non-structural management options.

Management Option Screening

The screening was undertaken by the Technical Working Group. The Technical Working Group screened all management options collated as part of this investigation based on the knowledge of the members and the results of the flood modelling and analysis completed by BMT. The screening considered the feasibility of each potential management option in terms of;

- The option's likelihood of delivering the required flood alleviation to the communities of the Mount William Creek catchment; and
- The economic, social and environmental costs.

In total, over 15 structural and eight non-structural management options were screened resulting in three structural and six non-structural management options were recommended for further assessment.

Structural Management Options Assessment

The three management schemes that were assessed were:

- Scheme 1: Dadswells Bridge Levee A levee on the south side of the Western Highway, built to the same height as the existing highway level. This levee is designed to provide protection to a number of businesses on the south side of the Western Highway within the township of Dadswells Bridge
- Scheme 2: Lake Lonsdale A reduction in the operating level of Lake Lonsdale. Currently the operating level of Lake Lonsdale is 187.12 metres AHD, 0.5 metres below the spillway. This scheme will model the Lake Lonsdale operating level as being 185.62 m AHD, 2.0 metres below the spillway. This will allow for an additional 29,630 ML of flood storage within Lake Lonsdale.
- Scheme 3: Road Access Upgrading the Ararat Halls Gap Road (C222) to minimise flooding
 over this key access road through the catchment. The intent of this component is to improve
 access during and following a flood event for the communities of Pomonal and Moyston (either
 through connection to Halls Gap or Ararat), and in doing so also improves access to the
 catchment for emergency services.

Hydraulic modelling of the range of design events; that is the 5 year, 10 year, 20 year, 50 year, 100 year and 200 year ARI, as well as the PMF events; were used to undertake flood impact and damages assessments. Additionally, a benefit-cost ratio, which is an economic assessment based on preliminary cost estimates, was undertaken.

The resulting reductions in flood risk and Average Annual Damages (AAD) for the four schemes assessed was similar. As a result, the benefit-cost ratios were most heavily influenced by the cost of each scheme, as shown in Table 5.

Structural Management Scheme	AAD	Capital Cost	Total Scheme Cost	BCR
Existing	\$1,624,200			
Scheme 1	\$1,616,800	\$230,000	\$1,491,000	0.08
Scheme 2	\$1,548,900	\$11,190,000	\$12,136,000	0.10
Scheme 3	\$1,560,100	\$11,990,000	\$16,529,000	0.06

Table 5 Structural Management Scheme Benefit-Cost Ratios

Recommended Structural Management Scheme

All three modelled structural mitigation schemes provide minimal reductions to the Annual Average Damages and consequently result in very low Benefit-Cost Ratios. This is not unexpected due to the majority of the flood damages being incurred through damages to agricultural land and roads, and Schemes 1 and 3 making very little (if any) difference to these values. Whilst there is a noticeable reduction in the damages for Scheme 2, it comes at a significant capital cost; hence the BCR is still very low. However, the capital cost is based on the assumption that water from Lake Lonsdale would need to be 'purchased' in order to reduce the operating level. The BCR would improve significantly if this water did not need to be 'purchased'.

Consequently, there is no preferred structural mitigation scheme recommended by the Steering Committee for the Mount William Creek Catchment. However, mitigation works should still be considered for protection of individual properties where deemed appropriate. A series of nonstructural mitigation works will also be implemented across the catchment, including recommendations for improving the flood warning system and amendments to the planning scheme overlays.

Recommended Non-Structural Management Options

A number of non-structural management options identified during options screening were recommended for implementation in the Mount William Creek Flood Investigation. These were:

- Declaration of flood levels;
- Amendments to planning schemes, including Planning Overlays (LSIO and FO);
- Flood response plan, including flood intelligence and consequence information.
- Flood warning system; and
- Community education.

List of Abbreviations and Acronyms

- AEP Annual Exceedance Probability The % probability of an event occurring within any one year, as it is a probability it is possible to have two (or more) event that exceed this level within the space of a single year.
- AHD Australian Height Datum The datum to which all vertical control mapping would be referred Australia wide. The datum (zero level) is set at the mean sea level around Australia.
- ARCC Ararat Rural City Council
- ARI Average Recurrence Interval The average interval between exceedances of an event. A 100 year ARI event will be exceeded on average once every 100 years. The inverse of ARI is AEP (Annual Exceedance Probability). A 100 years ARI event has an AEP of 0.01 (1%). It is possible to have 0, 1, 2 or more 100 years ARI events in any 100 year period.
- CMA Catchment Management Authority
- **DEM** Digital Elevation Model Three dimensional computer representation of terrain
- **DEPI** Department of Environment and Primary Industries
- FFA Flood Frequency Analysis
- **FI** Fraction Imperviousness The fraction of the catchment that is impervious, that is, land which does not allow infiltration of water
- FO Flood Overlay
- HRCC Horsham Rural City Council
- LiDAR Light Detection and Ranging Ground survey taken from an aeroplane typically using a laser. Using the laser pulse properties the ranging and reflectivity is used to determine properties of the laser strike, soil type/tree/building/road/etc. It is usual to filter non-ground strikes (trees/buildings/etc) from the LiDAR before it is used to generate a DEM.
- LSIO Land Subject to Inundation Overlay
- ML Mega-Litres (1,000,000 L)
- NGSC Northern Grampians Shire Council
- **PMF** Probable Maximum Flood the flood resulting from the PMP (see below).
- **PMP** Probable Maximum Precipitation Largest probable rainfall event. These typically have an ARI beyond 1,000,000 years, or alternatively a 0.000001% AEP.
- PSM Permanent Survey Mark
- **RCBC** Reinforced Concrete Box Culvert (also referred to as a Rectangular Culvert)
- RCP Reinforce Concrete Pipe (also referred to as a Circular Culvert)
- **Manning's n** Hydraulic roughness due to ground conditions, typically averaged over an area of relative homogeneity, e.g. it's harder for water to flow through an area of heavy brush and trees than maintained grass.
- VFD Victorian Flood Database

Contents

Exe	cutive	e Sumn	nary	i				
List	of Ab	brevia	tions and Acronyms	iv				
1	Intro	oductio	n	1				
	1.1	Study I	Background	1				
	1.2	Previou	us Reports	1				
	1.3	Catchn	nent Description	2				
	1.4	Study /	Area	3				
	1.5	Historio	cal Flooding	3				
	1.6	1.6 Key Objectives						
2	Data	Collat	ion	7				
	2.1	Topogr	aphic Data	7				
		2.1.1	Ground Survey	8				
	2.2	2.2 Aerial Photography						
	2.3	Planning Scheme Information						
	2.4	Draina	ge Assets (Culverts and Bridges)	9				
		2.4.1	Discussion	11				
	2.5	Stream Gauge Data						
	2.6	Rainfal	I Data	12				
	2.7	Historio	c Flooding	13				
	2.8	Previou	us Studies	16				
		2.8.1	Halls Gap Flood Study (Water Technology, 2008)	16				
		2.8.2	Wimmera River – Yarriambiack Creek Flows Study (Water Technology, 2009)	16				
3	Data	Verifi	cation	18				
	3.1	Lidar	Verification	18				
		3.1.1	Vertical Accuracy	18				
		3.1.2	Discussion on Vertical Accuracy	20				
		3.1.3	Horizontal Accuracy	20				
		3.1.4	Summary	21				
	3.2	Verifica	ation of Other Data	21				
4	Hyd	rologic	Modelling	23				
	4.1	Flood F	Frequency Analysis	23				
		4.1.1	Introduction	23				

	4.1.1.1	Background on Approach	24			
	4.1.2	Data	24			
	4.1.2.1	Water Year	25			
	4.1.2.2	Gauged Data Error	25			
	4.1.2.3	Historic Data	26			
	4.1.2.4	Extending Instantaneous Flow Record	26			
	4.1.3	Flood Frequency Analysis	27			
	4.1.3.1	Annual Maximum Data	28			
	4.1.3.2	Censored Data	30			
	4.1.3.3	Inference Method	31			
	4.1.3.4	Results – 415217 Fyans Creek at Grampians Road Bridge	32			
	4.1.3.5	Results – 415214 Fyans Creek at Lake Bellfield	35			
	4.1.3.6	Results – 415250 Fyans Creek at Fyans Creek	38			
	4.1.3.7	Results – 415252 Mount William Creek at Mokepilly	41			
	4.1.3.8	Results – Mount William Creek at Lake Lonsdale (Tail Gauge)	44			
	4.1.4	Uncertainty of FFA	47			
	4.1.5	Discussion	47			
4.2	Regiona	al Flood Frequency Analysis	47			
	4.2.1	Discussion	48			
4.3	RORB Model					
	4.3.1	Model Description	49			
	4.3.2	Sub-Catchment Definition	49			
	4.3.3	Reach Types	49			
	4.3.4	Fraction Impervious	50			
4.4	Calibration and Validation					
	4.4.1	Calibration and Validation Process	52			
	4.4.2	Stream Gauge Information	52			
	4.4.3	Rainfall Selection and Distribution	52			
	4.4.4	Calibration and Validation Event Selection	56			
	4.4.4.1	Calibration and Validation Event Selection Summary	57			
	4.4.5	Calibration Parameters	58			
	4.4.6	January 2011 Calibration Results	59			
	4.4.7	December 1992 Calibration Results	62			
	4.4.8	October 1996 Verification Results	66			
	4.4.9	May 1974 Verification Results	68			
	4.4.10	Calibration / Validation Conclusions	69			
4.5	Design Event Modelling					

		4.5.1	Global Parameters	70			
		4.5.2	Design Event Probabilities	70			
		4.5.3	Design Rainfall	70			
		4.5.3.1	Increase Rainfall Intensity - Climate Change	71			
		4.5.4	Temporal Patterns and Areal Reduction Factors	71			
		4.5.5	Calculation of PMP	72			
		4.5.6	Design Event Losses	72			
		4.5.7	Critical Event Derivation	72			
		4.5.8	Determination of Initial Water Levels for Storages	73			
		4.5.8.1	Discussion	77			
		4.5.8.2	Recommendations for Starting Lake Levels	77			
		4.5.9	Wimmera River Inflow	78			
		4.5.10	Peak Flows	78			
		4.5.11	Sensitivity Analysis - Climate Change	79			
	4.6	Discuss	sion	82			
	4.7	Summa	ary	82			
	4.8	Discuss	sion and Recommendations	84			
5	Hyd	Hydraulic Modelling					
	5.1	Model [Description	85			
	5.2	Model [Development	85			
		5.2.1	Topography	86			
		5.2.2	Surface Roughness	86			
		5.2.3	Hydraulic Structures	87			
		5.2.3.1	Drainage Structures	87			
		5.2.3.2	Flow Control Structures	87			
		5.2.4	Boundary Conditions	87			
		5.2.5	Mount William Township Fine Mesh Domain	88			
	5.3	Model (Calibration and Validation	91			
		5.3.1	Calibration and Validation Process	91			
		5.3.2	Calibration and Validation Data	91			
		5.3.3	Event Selection	92			
		5.3.4	January 2011 Calibration Event – Hydraulic Model Setup, Assumptions and Results	92			
		5.3.4.1	Initial Calibration	93			
		5.3.4.2	Community Feedback	98			
		5.3.4.3	Final Calibration	98			
		5.3.4.4	Evidence to Support Final Calibration	104			

		5.3.5	December 1992 Verification Event – Hydraulic Model Setup, Assumptions and Results	111		
		5.3.6	Calibration and Validation Summary	115		
	5.4	Design	Event Modelling	115		
6	Qua	ality Ass	surance	116		
	6.1	Hydrold	ogic (RORB) Model Review	116		
	6.2	Hydrau	lic (TUFLOW) Model Review	116		
7	Floo	od Map	oing and Results	117		
	7.1	Flood [Depth Mapping	117		
	7.2	Flood H	Hazard Mapping	117		
	7.3	Flood \	/elocity Mapping	118		
8	Floo	od Dam	ages Assessment	131		
	8.1	Method	lology	132		
	8.2	Key As	sumptions	133		
	8.3	ANUFL	OOD Building Damages Assessment	134		
		8.3.1	ANUFLOOD Stage-Damage Curves	134		
		8.3.3	ANUFLOOD Building Damages Summary	136		
	8.4	4 Flooded Floor Levels				
	8.5	Rapid A	Appraisal Method (RAM) Damages Assessment	144		
		8.5.1	RAM Building Damages	144		
		8.5.1.1	Differences between ANUFLOOD and RAM Building Damages	145		
		8.5.2	RAM Agricultural Damages	145		
		8.5.3	RAM Road Infrastructure Damages	146		
	8.6	Averag	e Annual Damages	147		
	8.7	Summa	ary	148		
9	Floo	od Mitig	ation Assessment	150		
	9.1	Flood N	Aitigation Overview	150		
		9.1.1	Background	150		
		9.1.2	Key Issues	150		
		9.1.3	Management Objectives	151		
	9.2	•	ement Option Screening	151		
		9.2.1	Structural Management Schemes Assessment	151		
	9.3		ral Management Schemes	152		
		9.3.1	Scheme One	152		
		9.3.2	Scheme Two	152		
		9.3.3	Scheme Three	153		

	9.4	Assessr	ment Methodology	153
		9.4.1	Hydraulic Assessment and Flood Impact Mapping	153
		9.4.2	Benefit Cost Ratio	153
		9.4.3	Cost Estimates	155
	9.5	Scheme	e 1: Dadswells Bridge Levees	156
		9.5.1	Description of Works	156
		9.5.2	Flood Impacts	156
		9.5.3	Change in Flooded Floors	156
		9.5.4	Benefit Cost Ratio	157
		9.5.5	Advantages and Disadvantages	157
	9.6	Scheme	e 2: Lake Lonsdale and Stawell Works	159
		9.6.1	Description of Works	159
		9.6.2	Flood Impacts	159
		9.6.3	Change in Flooded Floors	159
		9.6.4	Benefit Cost Ratio	160
		9.6.5	Advantages and Disadvantages	160
	9.7	Scheme	e 3: Whole of Catchment Access	163
		9.7.1	Description of Works	163
		9.7.2	Flood Impacts	163
		9.7.3	Change in Flooded Floors	163
		9.7.4	Benefit Cost Ratio	164
		9.7.5	Advantages and Disadvantages	164
	9.8	Flood IV	litigation Conclusions	167
10	Floo	d Warn	168	
	10.1	Flood W	/arning Systems	168
		10.1.1	Limitations of Flood Warning Systems	168
	10.2	Flooding	g within the Mount William Creek Catchment	168
		10.2.1	Catchment Overview	168
		10.2.2	Flood Behaviour	169
		10.2.3	Flood Risk in the Mount William Creek Catchment	170
		10.2.4	Flood Mitigation Options	171
	10.3	The Tas	sk for Mount William Creek	172
		10.3.1	The Problem	172
		10.3.2	Existing Flood Warning System	172
		10.3.3	What Will Need to be Done	172
		10.3.4	Data Collection and Collation	173
		10.3.4.1	Introduction	173

		10.3.4.2	2 Turn-Key Data Collection & Alerting Systems	173
		10.3.4.3	Other Automated Data Collection and Alerting Systems	174
		10.3.4.4	Existing Data Collection Network	176
		10.3.4.5	Possible Additional Data Collection Sites	176
		10.3.5	Flood Detection & Prediction	179
		10.3.5.1	Use of Existing Gauges	180
		10.3.6	Interpretation	182
		10.3.7	Message Construction and Dissemination	182
		10.3.8	Response	183
		10.3.9	Community Flood Awareness	183
	10.4	Sugges	sted System for Mount William Creek	185
	10.5	Sugges	sted Actions	193
		10.5.1	Stage 1	193
		10.5.2	Stage 2	194
		10.5.3	Stage 3	194
		10.5.4	Stage 4	194
		10.5.5	Stage 5	195
		10.5.6	Stage 6	195
		10.5.7	Stage 7	195
		10.5.8	Stage 8	195
11	Floo	dplain	Management	196
	11.1	Flood H	lazard	196
	11.2	Plannin	ng Controls	196
	11.3	Declare	ed Flood Levels	197
	11.4	Flood F	Response Plan	197
12	Sum	mary a	and Recommendations	203
13	Refe	rences		204
	endix		lood Depth Mapping	A-1
	endix		lood Hazard Mapping	B-1
	endix		lood Velocity Mapping	C-1
	endix		litigation Scenarios – Flood Impact Assessment	D-1
	endix		The Flood Warning Service Provided by BOM	E-1
	endix		ndicative Flood/No Flood Tools for Mount William Creek	F-1
	endix		stimated costs for TFWS for Mount William Creek	G-1
				• 1

Х

List of Figures

Figure 1	Study Area and Town Map	ii
Figure 2	Comparison between initial and final January 2011 calibrations – Jallukar	vii
Figure 3	Flooding of a property on Ararat – Halls Gap Road, Jallukar (left photo 1, right photo 2)	vii
Figure 4	Map of the Mount William Creek 100 year flood extent showing floodwater breaking out of Mt William Creek upstream of the gauge, bypassing the Mokepilly stream gauge.	viii
Figure 5	Map of the Mount William Creek 100 year flood extent showing floodwater breaking out of Mt William Creek upstream of the gauge, bypassing the Mount William Creek tail gauge.	viii
Figure 6	Map of the 100 year flood extent showing floodwater breaking out of Fyans Creek upstream of the gauge, bypassing the Fyans Creek stream gauge.	ix
Figure 7	Existing Conditions 1% AEP Peak Flood Depth	xi
Figure 1-1	Locality Map	5
Figure 1-2	Study Area	6
Figure 2-1	January 2011 Survey Marks	15
Figure 2-2	Existing Flood Mapping in the Mount William Creek Catchment	17
Figure 3-1	Distribution of PSM Differences	20
Figure 4-1	Recorded Flow at Lake Lonsdale (Tail Gauge) based on Old and New Ratings	26
Figure 4-2	Mean Daily vs Instantaneous Flow – Mount William Creek at Lake Lonsdale	27
Figure 4-3	FFA Results: Fyans Creek at Grampians Road Bridge - Log Normal Fitting	32
Figure 4-4	FFA Results: Fyans Creek at Grampians Road Bridge - LP3 Fitting	33
Figure 4-5	FFA Results: Fyans Creek at Grampians Road Bridge - Gumbel Fitting	33
Figure 4-6	FFA Results: Fyans Creek at Grampians Road Bridge - GEV Fitting	34
Figure 4-7	FFA Results: Fyans Creek at Grampians Road Bridge - Generalised Pareto Fitting	34
Figure 4-8	FFA Results: Fyans Creek at Lake Bellfield - Log Normal Fitting	35
Figure 4-9	FFA Results: Fyans Creek at Lake Bellfield - LP3 Fitting	36
Figure 4-10	FFA Results: Fyans Creek at Lake Bellfield - Gumbel Fitting	36
Figure 4-11	FFA Results: Fyans Creek at Lake Bellfield - GEV Fitting	37
Figure 4-12	FFA Results: Fyans Creek at Lake Bellfield - Generalised Pareto Fitting	37
Figure 4-13	FFA Results: Fyans Creek at Fyans Creek - Log Normal Fitting	38
Figure 4-14	FFA Results: Fyans Creek at Fyans Creek - LP3 Fitting	39
Figure 4-15	FFA Results: Fyans Creek at Fyans Creek - Gumbel Fitting	39
Figure 4-16	FFA Results: Fyans Creek at Fyans Creek - GEV Fitting	40
Figure 4-17	FFA Results: Fyans Creek at Fyans Creek - Generalised Pareto Fitting	40

Figure 4-18	FFA Results: Mount William Creek at Mokepilly - Log Normal Fitting	41
Figure 4-19	FFA Results: Mount William Creek at Mokepilly - LP3 Fitting	42
Figure 4-20	FFA Results: Mount William Creek at Mokepilly - Gumbel Fitting	42
Figure 4-21	FFA Results: Mount William Creek at Mokepilly - GEV Fitting	43
Figure 4-22	FFA Results: Mount William Creek at Mokepilly - Generalised Pareto Fitting	43
Figure 4-23	FFA Results: Mount William Creek at Lake Lonsdale (Tail Gauge) - Log Normal Fitting	44
Figure 4-24	FFA Results: Mount William Creek at Lake Lonsdale (Tail Gauge) - LP3 Fitting	45
Figure 4-25	FFA Results: Mount William Creek at Lake Lonsdale (Tail Gauge) - Gumbel Fitting	45
Figure 4-26	FFA Results: Mount William Creek at Lake Lonsdale (Tail Gauge) - GEV Fitting	46
Figure 4-27	FFA Results: Mount William Creek at Lake Lonsdale (Tail Gauge) - Generalised Pareto Fitting	46
Figure 4-28	RORB Model Layout	51
Figure 4-29	Stream Gauge and Pluviograph Station Locations	54
Figure 4-30	Stream Gauge and Rainfall Station Locations	55
Figure 4-31	Calibrated Hydrograph Comparison for January 2011 – Fyans Creek at Fyans Creek	61
Figure 4-32	Calibrated Hydrograph Comparison for January 2011 – Mount William Creek at Mokepilly	61
Figure 4-33	Calibrated Hydrograph Comparison for January 2011 – Mount William Creek at Lake Lonsdale Tail Gauge	62
Figure 4-34	Calibrated Hydrograph Comparison for December 1992 – Fyans Creek at Fyans Creek	64
Figure 4-35	Calibrated Hydrograph Comparison for December 1992 – Mount William Creek at Mokepilly	64
Figure 4-36	Calibrated Hydrograph Comparison for December 1992 – Mount William Creek at Lake Lonsdale Head Gauge	65
Figure 4-37	Calibrated Hydrograph Comparison for December 1992 – Mount William Creek at Lake Lonsdale Tail Gauge	65
Figure 4-38	Verification Hydrograph Comparison for October 1996 – Fyans Creek at Fyans Creek	67
Figure 4-39	Verification Hydrograph Comparison for October 1996 – Mount William Creek at Mokepilly	67
Figure 4-40	Verification Hydrograph Comparison for October 1996 – Mount William Creek at Lake Lonsdale Head Gauge	68
Figure 4-41	Validation Hydrograph Comparison for May 1974 – Mount William Creek at Lake Lonsdale Tail Gauge	69
Figure 4-42	Lake Bellfield Plot	74

Figure 4-43	Lake Fyans Plot	75
Figure 4-44	Lake Lonsdale Plot	76
Figure 4-45	Lake Lonsdale Level Analysis	77
Figure 4-46	1 in 100 year ARI 18 Hour Initial Design Hydrographs	79
Figure 4-47	Climate Change Sensitivity – Fyans Creek	80
Figure 4-48	Climate Change Sensitivity – Mokepilly	80
Figure 4-49	Climate Change Sensitivity – Lake Lonsdale	81
Figure 4-50	Climate Change Sensitivity – Dadswells Bridge	81
Figure 5-1	TUFLOW Model Layout	89
Figure 5-2	Manning's 'n' Roughness Coefficient Distribution	90
Figure 5-3	Initial January 2011 Calibration: Fyans Creek at Fyans Creek	93
Figure 5-4	Initial January 2011 Calibration: Mount William Creek at Mokepilly	94
Figure 5-5	Initial January 2011 Calibration: Mount William Creek at Lake Lonsdale	94
Figure 5-6	Initial January 2011 Calibration – Distribution of Surveyed Flood Marks	96
Figure 5-7	Initial January 2011 Calibration: Flood Depth and Survey Marks	97
Figure 5-8	Final January 2011 Calibration – Fyans Creek at Fyans Creek	100
Figure 5-9	Final January 2011 Calibration – Mount William Creek at Mokepilly	101
Figure 5-10	Final January 2011 Calibration – Mount William Creek at Lake Lonsdale	101
Figure 5-11	Final January 2011 Calibration – Distribution of Surveyed Flood Marks	102
Figure 5-12	Final January 2011 Calibration: Flood Depth and Survey Marks	103
Figure 5-13	Comparison between initial and final January 2011 calibrations – Jallukar (1)	104
Figure 5-14	Flooding of a property on Ararat – Halls Gap Road, Jallukar	105
Figure 5-15	Comparison between initial and final January 2011 calibrations – Jallukar (2)	106
Figure 5-16	Flooding of the Air Strip on Ararat – Halls Gap Road, Jallukar	106
Figure 5-17	Comparison between initial and final January 2011 calibrations – Jallukar (3)	107
Figure 5-18	Flooding of Ararat – Halls Gap Road (East of Lady Summers Bridge)	107
Figure 5-19	Comparison of initial and final January 2011 calibrations - Moyston	108
Figure 5-20	Flooding between house and shed - Presbyterian Church Road, Moyston	109
Figure 5-21	Comparison of initial and final January 2011 calibrations - Pomonal	110
Figure 5-22	Comparison of initial and final January 2011 calibrations – Halls Gap (Reids Lane)	111
Figure 5-23	December 1992 Verification: Fyans Creek at Fyans Creek	112
Figure 5-24	December 1992 Verification: Mount William Creek at Mokepilly	112
Figure 5-25	December 1992 Verification: Mount William Creek at Lake Lonsdale	113
Figure 5-26	December 1992 Verification: Flood Depths	114

Figure 7-1	1 in 100 Year ARI Peak Flood Depth – Catchment	119
Figure 7-2	1 in 100 Year ARI Peak Flood Depth – Dadswells Bridge	120
Figure 7-3	1 in 100 Year ARI Peak Flood Depth – Moyston	121
Figure 7-4	1 in 100 Year ARI Peak Flood Depth – Pomonal	122
Figure 7-5	1 in 100 Year ARI Peak Flood Hazard – Catchment	123
Figure 7-6	1 in 100 Year ARI Peak Flood Hazard – Dadswells Bridge	124
Figure 7-7	1 in 100 Year ARI Peak Flood Hazard – Moyston	125
Figure 7-8	1 in 100 Year ARI Peak Flood Hazard – Pomonal	126
Figure 7-9	1 in 100 Year ARI Peak Flood Velocity – Catchment	127
Figure 7-10	1 in 100 Year ARI Peak Flood Velocity – Dadswells Bridge	128
Figure 7-11	1 in 100 Year ARI Peak Flood Velocity – Moyston	129
Figure 7-12	1 in 100 Year ARI Peak Flood Velocity – Pomonal	130
Figure 8-1	Types and Categorisation of Flood Damage Costs - Reproduced from <i>Rapid</i> Appraisal Method (RAM) For Floodplain Management (NRE 2000).	132
Figure 8-2	ANUFLOOD Stage-Damage Curves	135
Figure 8-3	1 in 5 Year ARI Flooded Buildings – Whole of Catchment	137
Figure 8-4	1 in 10 Year ARI Flooded Buildings – Whole of Catchment	138
Figure 8-5	1 in 20 Year ARI Flooded Buildings – Whole of Catchment	139
Figure 8-6	1 in 50 Year ARI Flooded Buildings – Whole of Catchment	140
Figure 8-7	1 in 100 Year ARI Flooded Buildings – Whole of Catchment	141
Figure 8-8	1 in 200 Year ARI Flooded Buildings – Whole of Catchment	142
Figure 8-9	PMF Flooded Buildings – Whole of Catchment	143
Figure 8-10	Existing Condition Probability-Damages Curve	148
Figure 9-1	Mitigation Option 1 – 100 Year ARI Flood Impact	158
Figure 9-2	Mitigation Option 2 – 100 Year ARI Flood Impact - Lake Lonsdale	161
Figure 9-3	Mitigation Option 2 – 100 Year ARI Flood Impact - Stawell Works	162
Figure 9-4	Mitigation Option 3 – 100 Year ARI Flood Impact – Road Upgrade	165
Figure 9-5	Mitigation Option 3 – 100 Year ARI Flood Impact – Main Channel Reinstatement	166
Figure 10-1	Potential PALS locations for Dadswells Bridge	178
Figure 11-1	Proposed Planning Scheme - Catchment	198
Figure 11-2	Proposed Planning Scheme – ARCC	199
Figure 11-3	Proposed Planning Scheme - HRCC	200
Figure 11-4	Proposed Planning Scheme - NGSC	201

List of Tables

Table 1	Mount William Creek at Lake Lonsdale (Tail Gauge): Flood Frequency Analysis Results	V
Table 2	Comparison of 1 in 100 Year Peak Design Flows (ML/day)	vi
Table 3	Comparison of Peak Design Flows for January 2011 flood event (ML/day)	Х
Table 4	Properties flooded and above floor flooding against ARI event	i
Table 5	Structural Management Scheme Benefit-Cost Ratios	iii
Table 3-1	Comparison of LiDAR to PSMs	19
Table 3-2	Comparison of LiDAR to Field Survey	19
Table 3-3	Verification of Culvert Details	22
Table 4-1	Stream Flow Gauges in the Mount William Creek Catchment	25
Table 4-2	Annual Maximum Series: 415217 Fyans Creek at Grampians Road Bridge	28
Table 4-3	Annual Maximum Series: 415214 Fyans Creek at Lake Bellfield	28
Table 4-4	Annual Maximum Series: 415250 Fyans Creek at Fyans Creek	29
Table 4-5	Annual Maximum Series: 415252 Mount William Creek at Mokepilly	29
Table 4-6	Annual Maximum Series: 415203 Mount William Creek at Lake Lonsdale (Tail Gauge)	29
Table 4-7	Censored Data Values	31
Table 4-8	415217 Fyans Creek at Grampians Road Bridge: FFA Results	32
Table 4-9	415214 Fyans Creek at Lake Bellfield: FFA Results	35
Table 4-10	415250 Fyans Creek at Fyans Creek: Flood Frequency Analysis Results	38
Table 4-11	415252 Mount William Creek at Mokepilly: FFA Results	41
Table 4-12	Mount William Creek at Lake Lonsdale: Flood Frequency Analysis Results	44
Table 4-13	RFFE Results	48
Table 4-14	Comparison of Site FFA and RFFA Results	48
Table 4-15	Fraction Impervious Values	50
Table 4-16	Calibration and Validation Rainfall Event Rainfall Summary	58
Table 4-17	Calibrated Parameters and Values for January 2011	59
Table 4-18	Calibrated Parameters and Values for December 1992	62
Table 4-19	Validation Parameters and Values for October 1996	66
Table 4-20	Validation Parameters and Values for May 1974	68
Table 4-21	Initial RORB design parameters	70
Table 4-22	IFD Parameters	71
Table 4-23	GSAM Estimate of PMP Rainfall Depth	72
Table 4-24	RORB Design Event – Critical Duration	72

Mount William Creek Flood Investigation Final Report Contents

Table 4-25	Lake Bellfield - % Exceedance Values	73
Table 4-26	Lake Fyans - % Exceedance Values	74
Table 4-27	Lake Lonsdale - % Exceedance Values	75
Table 4-28	Initial RORB Design Peak Flow Values	78
Table 4-29	Comparison of Initial Peak Design Flows	82
Table 4-30	Adopted RORB design parameters	83
Table 4-31	Adopted RORB Design Peak Flow Values	83
Table 4-32	Comparison of Adopted Peak Design Flows	84
Table 5-1	2D Domain Manning's 'n' Coefficients	86
Table 5-2	Initial January 2011 Flow Comparison	95
Table 5-3	Final Calibration – January 2011 Flow Comparison	102
Table 5-4	December 1992 Verification: Flow Comparison	113
Table 8-1	Existing Conditions ANUFLOOD Building Damages Summary	136
Table 8-2	RAM Building Potential Damage Values	144
Table 8-3	Existing Conditions RAM Building Damages Summary	144
Table 8-4	RAM Agricultural Damage Values	145
Table 8-5	Existing Conditions RAM Agricultural Damages Summary	146
Table 8-6	RAM Road Infrastructure Damage Values	146
Table 8-7	Existing Conditions RAM Road Infrastructure Damages Summary	146
Table 8-8	Existing Conditions Damages Summary	148
Table 9-1	Present Value of Annual Benefits	154
Table 9-2	Change in Flooded Floors – Scheme One	156
Table 9-3	Scheme 1 BCR Summary	157
Table 9-4	Advantages and Disadvantages of Scheme 1	157
Table 9-5	Change in Flooded Floors – Scheme Two	159
Table 9-6	Scheme 1 BCR Summary	160
Table 9-7	Advantages and Disadvantages of Scheme 2	160
Table 9-8	Change in Flooded Floors – Scheme Three	163
Table 9-9	Scheme 3 BCR Summary	164
Table 9-10	Advantages and Disadvantages of Scheme 3	164
Table 10-1: P	otential PALS locations, gauge zeroes and applicable design flood levels	178
Table 10-2	Expected Flood Magnitude Vs. Lake Lonsdale Tail Gauge Heights	181
Table 10-3	Expected Flood Magnitude Vs. Mokepilly Gauge Heights	181
Table 10-4	Expected Flood Magnitude Vs. Fyans Creek Gauge Heights	181

Table 10-5Flood Warning System Building Blocks and Possible Solution for the Mount
William Creek catchment with due regard for the EMMV, Commonwealth-State
arrangements for flood warning service provision (BoM, 1987; VFWCC, 2001;
and EMA, 2009)

186

