

Upper Wimmera Flood Investigation Final Report

Reference: R.M8460.009.01.Final.docx Date: 30 June 2014

Upper Wimmera Flood Investigation Final Report

Prepared for:	Wimmera Catchment Management Authority
Prepared by:	BMT WBM Pty Ltd (Member of the BMT group of companies)

Offices

Brisbane Denver London Mackay Melbourne Newcastle Perth Sydney Vancouver

Document Control Sheet

	Document:	R.M8460.009.01.Final.docx
BMT WBM Pty Ltd Level 5, 99 King Street Melbourne Vic 3000	Title:	Upper Wimmera Flood Investigation Final Report
Australia PO Box 604	Project Manager:	Joel Leister
Collins Street West Vic 8007	Author:	Joel Leister and Dexter Reynolds
Tel: +61 3 8620 6100 Fax: +61 3 8620 6105	Client:	Wimmera Catchment Management Authority
ABN 54 010 830 421	Client Contact:	Abdul Aziz
www.bmtwbm.com.au	Client Reference:	
Synopsis: This report docume Flood Investigation	ents the tasks underta	aken as part of the Upper Wimmera

REVISION/CHECKING HISTORY

Revision Number	Date	Checked by		Issued by	
0	7 February 2014	JGL		DR	
1	30 June 2014	MAT	MAG	JGL	Hereiter

DISTRIBUTION

Destination					R	evisio	n				
	0	1	2	3	4	5	6	7	8	9	10
Wimmera Catchment Management Authority (PDF) BMT WBM File	1 1 1	1 1 1									
BMT WBM Library											

Executive Summary

This Executive Summary outlines the objectives, methodology and key outcomes of the Upper Wimmera Flood Investigation. Detailed reporting and mapping undertaken as part of the Upper Wimmera Flood Investigation are contained within the main report.

Study Background

Following the widespread flooding across Victoria in September 2010 and January 2011 the Minister for Water on the 19th September 2011 announced funding for the Upper Wimmera Flood Investigation. The Wimmera Catchment Management Authority (Wimmera CMA), in partnership with the Department of Environment and Primary Industries (DEPI), Northern Grampians Shire Council (NGSC), Pyrenees Shire Council (PSC) and, Ararat Rural City Council (ARCC) have commissioned this investigation.

The Upper Wimmera Catchment has an area of 1,500 km2 and is located in Central West Victoria. The catchment includes a number of waterways, namely, the Wimmera River and a number of its tributaries, including Mount Cole Creek, Wattle Creek (also known as Heifer Station Creek), Howard Creek and Seven Mile Creek. The majority of the catchment is used for agricultural purposes, predominately grazing. There are several townships within the catchment including Navarre, Landsborough, Elmhurst, Eversley, Crowlands, Joel Joel, Greens Creek and Campbells Bridge (Figure 1). The catchment was subject to flooding on three separate occasions between September 2010 and January 2011, which emphasised the need for improved understanding of the flood behaviour. The WCMA engaged BMT WBM Pty Ltd (BMT WBM) to undertake the flood investigation of the catchment.

Key Objectives

The key objectives of this study are to:

- Review available data and historic flood information;
- Engage with the community and stakeholders in order to understand their experiences of flooding and desired outcomes - data collected from the community will be potentially used as inputs (rainfall) and model outputs and verification (flood behaviour matching event observations);
- Determination and documentation of flood levels, extents, velocities and depths (and thus flood risk) for a range of flood events;
- A review of Ararat Rural City Council, Northern Grampians Shire Council and the Pyrenees Shire Council Planning Scheme's current Land Subject to Inundation Overlay (LSIO) and Flood Overlay (FO) overlay in the existing planning scheme. Prepare draft documentation for recommended (if any) amendments for council review;
- Preparation of digital and hard copy floodplain maps for design 1% AEP and other flood events, showing both floodplain and floodway extents, suitable for incorporation into municipal planning schemes should council deem appropriate;
- Assessment of flood damages;
- Identification and assessment of structural and non-structural mitigation measures to alleviate intolerable flooding risk;
- Costing and assessment of preferred structural mitigation measures;
- Preparation of flood intelligence and consequence information, including maps, for various flood frequency return periods;
- Review and update Northern Grampians Shire Council and the Pyrenees Shire Council Flood Response under the Municipal Emergency Management Plan;
- Delivery of all flood related data and outputs including fully attributed Victorian Flood Database (VFD) compliant datasets;
- Transparently reporting the outcome of the study together with the process followed and the findings;
- Engage the community in all stages of the flood investigation to ensure that most appropriate outcomes are achieved; and
- Recommend improvements to the existing flood warning network to reduce the impact upon potentially flooded persons and properties.

Data Collection

As part of the Upper Wimmera Flood Investigation, datasets and information were obtained from a variety of organisations. The datasets obtained included:

- **Topographic Data** Including LiDAR and Permanent Survey Marks.
- **GIS Data** Including: aerial photography, flood overlays, historical flood extents, cadastral information, planning zones and other government zones.

- Infrastructure Data Including: drainage network details and floodplain control structure details.
- **Rainfall and Streamflow Data** Including: daily rainfall, pluviograph, stream stage and stream flow records.
- Historic Flood Levels Including: surveyed flood levels and surveyed floor levels.

In addition to collecting data from external sources, site inspections and community surveys were also undertaken as part of the Upper Wimmera Flood Investigation.

Stakeholder Engagement

Community consultation was undertaken throughout the development of the Upper Wimmera Flood Investigation. The consultation included a series of public meetings and through community surveys.

The WCMA formed a Steering Committee for the project which consisted of key stakeholders from WCMA, DEPI, Council, VicSES and the local community. The steering committee provided governance and management of the Investigation and ensured that issues important to the Upper Wimmera community were properly considered. Throughout the study, regular meetings were with the Steering Committee at which the interim reports and presentations were discussed and issues were resolved.

Flood Model Development

The fully calibrated flood model developed for the Upper Wimmera Flood Investigation, to define flood behaviour within the study area and assess mitigation options, incorporates both hydrologic and hydraulic modelling techniques. Flood frequency analyses was undertaken using the FLIKE package to determine the magnitude of predicted peak discharges for a given level of risk or probability. Hydrologic modelling was undertaken using the RORB hydrologic modelling package to determine the rainfall-runoff characteristics of the catchment.

The catchment flows derived from the hydrologic modelling were then used as input flow boundaries for the TUFLOW hydraulic model. The TUFLOW hydraulic model was used to generate the required flood mapping and define the flooding characteristics of the study area.

The flood model was calibrated to the January 2011 flood event and validated against the September 2010 flood event. To assess the impacts of flooding on the Upper Wimmera, the flood model was run for the following Annual Exceedance Probability (AEP) events: 20%, 10%, 5%, 2%, 1% and 0.5% along with the Probable Maximum Flood (PMF) event.

Hydrologic Modelling

Flood Frequency Analysis

Flood frequency analysis (FFA) has been undertaken using the methods outlined in the draft version of Australian Rainfall and Runoff (ARR) Book IV Peak Flow Estimation. FFA of the four gauges within the catchment has been undertaken using the FLIKE software. The results of the FFA for the Glynwylln gauge provided peak flow estimates for a given AEP event for the Wimmera River. The resulting peak flows verses return period at Glynwylln gauge are shown in Table 1-1.

AEP	Expected Quantile (m ³ /s)	90% Quantile Probability Limits	
20%	153	118	201
10%	247	183	353
5%	364	254	606
2%	559	352	1168
1%	743	424	1879

Table 1-1 Wimmera River at Glynwylln: Flood Frequency Analysis Results

Hydrologic Modelling

The purpose of the hydrologic modelling was to characterise the catchment's runoff response to rainfall. This modelling produces time-series of discharge data (i.e. hydrographs) and was undertaken using the RORB hydrologic modelling software. The RORB model covered the entire Wimmera River catchment to downstream Glynwylln Gauge; an area of approximately 1,465 km².

To establish a degree of confidence that the hydrologic modelling was suitably representing the runoff behaviour of the catchment, model calibration and validation was undertaken at the four stream gauges within the catchment. The RORB model was calibrated against two flood events and summary statistics were reviewed to assess the fit of the model. The model was then validated against a further two flood events using the calibrated parameters. The RORB model was then used to derive flow hydrographs to provide inputs into the TUFLOW hydraulic model for the required flood events.

Hydraulic Modelling

In order to produce flood extents, depths, velocities and other hydraulic properties for the study area a 1D/2D linked hydraulic model was developed using TUFLOW. The floodplain was represented in the 2D domain with drainage and hydraulic structures modelled as 1D elements as required. The townships of Navarre and Landsborough were modelled at a higher resolution than the surrounding floodplain by incorporating a fine grid 2D domain into the model. The model covers the entire Upper Wimmera catchment.

The Upper Wimmera TUFLOW model underwent a calibration process to fit the model to the observed data. The TUFLOW model was calibrated to the September 2010 flood event and validated against the January 2011 flood event. The hydraulic model was successfully calibrated to the September 2010 and validated to the January 2011 flood events. The results demonstrated that the flood model has been effectively calibrated and is suitable for undertaking modelling of existing conditions and flood mitigation scenarios.

Existing Conditions Flood Mapping and Results

The flood model was run for the 20%, 10%, 5%, 2%, 1% and 0.5% AEP design flood events (existing conditions) along with the PMF event. For each of these design flood events a suite of flood mapping outputs was generated including: flood depth, flood level, flood velocity, flood hazard and flood affected properties and buildings. Existing conditions peak flood depth for the 1% AEP event is presented in Figure 2.

Existing Conditions Flood Damages Assessment

The existing conditions flood damages were assessed using a combination of the Rapid Appraisal Method (RAM) and ANUFLOOD methods, both widely adopted throughout Victoria. The ANUFLOOD method was adopted to estimate potential building damages while the RAM method was used to estimate potential agricultural and infrastructure damages.

Flood damages assessments enable floodplain managers and decision makers to gain an understanding of the monetary magnitude of assets under threat from flooding. The information determined in the damages assessment is also used to inform the selection of mitigation measures via a benefit cost analysis. The results of the flood modelling indicated that during the 1% AEP event, only 3 properties experience above floor flooding, as shown in Table 1-2. The existing conditions Average Annual Damages for the Upper Wimmera catchment were calculated to be \$2,926,300. However, agricultural damage and road infrastructure damage account for 77% and 22% of the total damage respectively.

Event AEP	No of Properties Inundated	No. of properties with Above Floor Flooding
PMF	53	37
0.5%	33	7
1%	20	3
2%	12	2
5%	7	0
10%	3	0
20%	2	0

Table 1-2 Properties flooded and above floor flooding against AEP event

Flood Management Options Assessment

Through consultation with the community, emergency management authorities and other stakeholders, an understanding of the major factors that influence flood risk in the Upper Wimmera were identified. This understanding was further enhanced through computer flood modelling and mapping undertaken as part of the investigation. These factors relate to the physical characteristics of the floodplain that contribute to flood risk in the Upper Wimmera and the factors that hamper the community's ability to manage the impact of flooding. The major factors are:

- The locations of many of the towns, including Navarre and Landsborough, are on the banks of multiple waterways subject to flooding;
- Limited road access through the majority of the Upper Wimmera catchment during times of flood;
- The steep upper catchment resulting in fast flood responses from heavy rainfall. Flooding is generally fast flowing but confined to recognised flow paths

- The flat lower catchment results in widespread flooding (flood extents are wide), floodwaters are generally slower in velocity and more likely to simply 'pond' on the floodplain.
- The limited rain and streamflow gauges within the catchment limit the ability for the community and emergency services to respond to a flood event. Flood warning is designed more for the towns downstream on the Wimmera River, rather than the Upper Wimmera Catchment. Flood warning in the upper reaches of any catchment is challenging due to the rapid response of the upper catchment.

In order to address and manage these factors that contribute to the flood risk in the Upper Wimmera, a comprehensive flood management options assessment was undertaken, including both structural and non-structural management options.

Management Option Screening

The screening was undertaken by the Technical Working Group. The Technical Working Group screened all management options collated as part of this investigation based on the knowledge of the members and the results of the flood modelling and analysis completed by BMT. The screening considered the feasibility of each potential management option in terms of;

- The option's likelihood of delivering the required flood alleviation to the communities of the Upper Wimmera; and
- The economic, social and environmental costs.

In total 27 structural and eight non-structural management options were screened resulting in three structural and six non-structural management options were recommended for further assessment.

Structural Management Options Assessment

The three management schemes that were assessed were:

- Scheme 1: Removal of Vegetation The creek alignments through Navarre and Landsborough are heavily vegetated and this scheme was used to determine the impact on flood levels through the removal of this vegetation.
- Scheme 2: Town Levee around Navarre The design of a levee(s) to prevent flow from entering the Navarre for all flood events up to and including the 100 year ARI flood event.
- Scheme 3: Whole of Catchment Access The design of upgraded roads to ensure safe road access between townships during all flood events up to and including the 100 year ARI flood event.

Hydraulic modelling of the range of design events; that is the 20%, 10%, 5%, 2%, 1% and 0.5% AEP and the PMF events; were used to undertake flood impact and damages assessments. Additionally, a benefit-cost ratio, which is an economic assessment based on preliminary cost estimates, was undertaken.

The resulting reductions in flood risk and Average Annual Damages (AAD) for the four schemes assessed was similar. As a result, the benefit-cost ratios were most heavily influenced by the cost of each scheme, as shown in Table 1-3.

Structural Management Scheme	AAD	Capital Cost	Total Scheme Cost	BCR
Existing	\$2,914,700			
Scheme 1	\$2,912,500	\$850,000	\$1,165,000	0.03
Scheme 2	\$2,912,200	\$1,500,000	\$2,067,000	0.02
Scheme 3	\$2,821,500	\$37,320,000	\$51,443,000	0.03

Structural Management Scheme Benefit-Cost Ratios Table 1-3

Recommended Structural Management Scheme

All three modelled structural mitigation schemes provide minimal reductions to the Annual Average Damages and consequently result in very low Benefit-Cost Ratios. This is not unexpected due to the majority of the flood damages being incurred through damages to agricultural land and roads, and the schemes one and two having very little (if any) difference to these values. Whilst there is a noticeable reduction in the damages for Scheme 3, it comes at a significant capital cost; hence the BCR is still very low.

Consequently, there is no preferred structural mitigation scheme recommended by the Steering Committee for the Upper Wimmera Catchment. However, mitigation works should still be considered for protection of individual properties where deemed appropriate. A series of nonstructural mitigation works will also be implemented across the catchment, including recommendations for improving the flood warning system and amendments to the planning scheme overlays.

Recommended Non-Structural Management Options

A number of non-structural management options identified during options screening were recommended for implementation in the Upper Wimmera Flood Investigation. These were:

- Declaration of flood levels;
- Amendments to planning schemes, including Planning Overlays;
- Flood response plan, including flood intelligence and consequence information.
- Flood warning system; and
- Community education.

List of Abbreviations, Acronyms & Glossary

1D/2D Model 1D hydraulic models rely on cross-sections taken at select location as representative of the floodplain or controls. A 2D model is (typically) a grid built from a DEM which allows for better representation of floodplains and allows superior modelling of complex flow patterns. AEP Annual Exceedance Probability - The % probability of an event occurring within any one year, as it is a probability it is possible to have two (or more) events that exceed this level within the space of a single year. AEMI Australian Emergency Management Institute AHD Australian Height Datum – The datum to which all vertical control mapping would be referred Australia wide. The datum (zero level) is set at the mean sea level around Australia. ARCC Ararat Rural City Council ARI Average Recurrence Interval - The probable recurrence interval of any event occurring, i.e. 100 year event is probable only to occur once every 100 years. The inverse of ARI is AEP, i.e. 50 year ARI = 2% AEP and is therefore possible to have two (or more) 100 year ARI storm events within the space of any 100 year period. AWS Automatic Weather Station BoM Bureau of Meteorology CMA Catchment Management Authority **Critical Duration** The design event that results in the peak discharge for any given AEP DEM Digital Elevation Model – Three dimensional computer representation of terrain DEPI Department of Environment and Primary Industries **DoTARS** Department of Transport and Regional Services DSE Department of Sustainability and Environment (now known as Department of Environment and Primary Industries) EA **Emergency Alert EMA Emergency Management Australia** EMMV **Emergency Management Manual Victoria** ERTS Event Report Radio Telemetry System **FFA** Flood Frequency Analysis, whereby historic data is used to determine design flood estimations. **FFWS** Flash Flood Warning System FL Fraction Imperviousness - The fraction of the catchment that is impervious, that is,

land which does not allow infiltration of water

FLIKE	A software package for performing the FFA, includes many standard statistical distributions
FO	Flood Overlay
IC	Incident Controller
ICC	Incident Control Centre
LGA	Local Government Area
LIDAR	Light Detection and Ranging – Ground survey taken from an aeroplane typically using a laser. Using the laser pulse properties the ranging and reflectivity is used to determine properties of the laser strike, soil type/tree/building/road/etc. It is usual to filter non-ground strikes (trees/buildings/etc) from the LiDAR before it is used to generate a DEM.
LSIO	Land Subject to Inundation Overlay
Manning's n	Hydraulic roughness due to ground conditions, typically averaged over an area of relative homogeneity, e.g. it's harder for water to flow through an area of heavy brush and trees than maintained grass.
MEMPC	Municipal Emergency Management Planning Committee
MERO	Municipal Emergency Resource Officer
MFEP	Municipal Flood Emergency Plan
NGSC	Northern Grampians Shire Council
OESC	Office of the Emergency Services Commissioner
PMF	Probable Maximum Flood – the flood resulting from the PMP (see below).
PMP	Probable Maximum Precipitation – Largest probable rainfall event. These typically have an ARI beyond 1,000,000 years, or alternatively a 0.000001% AEP.
PSC	Pyrenees Shire Council
PSM	Permanent Survey Mark
QA	Quality Assure
RDO	Regional Duty Officer
RORB	A node and link runoff and routing hydrologic modelling program
TFWS	Total Flood Warning System
TUFLOW	A 1D and 2D hydraulic modelling package developed by BMT WBM and is the most widely used 1D/2D flood modelling software in Australia.
VFD	Victorian Flood Database
VICPOL	Victoria Police
VICSES	Victoria State Emergency Service

Contents

Exec	cutive	e Sumn	nary	i	
List	of Ak	brevia	tions, Acronyms & Glossary	iv	
1	Intro	oductio	n	1	
	1.1	Study E	Background	1	
	1.2	Previou	is Reports	1	
	1.3	Catchm	nent Description	2	
	1.4	Study A	Area	2	
	1.5	Historic	al Flooding	3	
	1.6	Key Ob	jectives	3	
2	Data	Collat	ion	7	
	2.1	Topogr	aphic Data	7	
	2.2	Aerial F	Photography	8	
	2.3	Plannin	g Scheme Information	8	
	2.4	Drainad	ae Assets (Culverts and Bridges)	8	
	2.5	Gauge	11		
	2.6	Historic	Flooding	13	
3	Hyd	14			
	3.1	Flood Frequency Analysis			
		3.1.1	Introduction	14	
		3.1.1.1	Background on Approach	15	
		3.1.2	Data	15	
		3.1.2.1	Water Year	18	
		3.1.2.2	Gauged Data Error	18	
		3.1.2.3	Censored Data	19	
		3.1.2.4	Historic Data	21	
		3.1.2.5	Extending Instantaneous Flow Record	22	
		3.1.3	Flood Frequency Analysis	23	
		3.1.3.1	Annual Maximum Data	23	
		3.1.3.2	Results - Wattle Creek at Navarre	26	
		3.1.3.3	Results - Mount Cole Creek at Crowlands	30	
		3.1.3.4	Results - Wimmera River at Eversley	33	
		3.1.3.5	Results - Wimmera River at Glynwylln	36	
		3.1.4	Discussion	39	

3.2	RORB	Model	39
	3.2.1	Model Description	40
	3.2.2	Sub-Catchment Definition	40
	3.2.3	Reach Types	40
	3.2.4	Fraction Impervious	40
3.3	Calibra	tion and Validation	43
	3.3.1	Calibration and Validation Process	43
	3.3.2	Stream Gauge Information	43
	3.3.3	Rainfall Selection and Distribution	43
	3.3.4	Calibration and Validation Event Selection	47
	3.3.4.1	Calibration and Validation Event Selection Summary	47
	3.3.5	Calibration Parameters	48
	3.3.6	January 2011 Calibration Results	49
	3.3.7	September 2010 Calibration Results	52
	3.3.8	Validation Results	55
	3.3.9	Calibration / Validation Conclusions	57
3.4	Design	Event Modelling	57
	3.4.1	Global Parameters	58
	3.4.2	Design Event Probabilities	58
	3.4.3	Increase Rainfall Intensity – Climate Change	58
	3.4.4	Design Rainfall	59
	3.4.4.1	Temporal Patterns	59
	3.4.4.2	Calculation of PMP	60
	3.4.5	Design Event Losses	60
	3.4.6	Critical Event Derivation	61
	3.4.7	Peak Flows	61
3.5	Summa	ary	63
Hyd	Iraulic N	Nodelling	64
4.1	Model I	Description	64
4.2	Model I	Development	65
	4.2.1	Topography	65
	4.2.2	Surface Roughness	65
	4.2.3	Hydraulic Structures	66
	4.2.4	Boundary Conditions	67
	4.2.5	Upper Wimmera Township Fine Mesh Domain	67
4.3	Model	Calibration and Validation	71
	4.3.1	Calibration and Validation Process	71

4

		132	Calibration and Validation Data	71		
		433		72		
		4.3.0	September 2010 Calibration Event – Hydraulic Model Setup Assumptions	12		
		т.у.т	and Results	72		
		4.3.5	Verification Event – Hydraulic Model Setup, Assumptions and Results	80		
		4.3.6	Calibration Sensitivity Analysis	88		
		4.3.7	Calibration and Validation Summary	89		
	4.4	Desigr	n Event Modelling	89		
5	Мос	delling	Quality Assurance	91		
	5.1	Hydrol	logic (RORB) Model Review	91		
	5.2	Hydra	ulic (TUFLOW) Model Review	91		
6	Floo	od Map	ping and Results	92		
	6.1	Flood	Depth Mapping and Description	92		
	6.2	Flood	Hazard Mapping	92		
	6.3	Flood	Velocity Mapping	93		
	6.4	Increa	sed Rainfall Intensity Sensitivity	106		
7	Floo	od Dam	nages Assessment	111		
	7.1	Flood Damages				
	7.2	Metho	dology	112		
	7.3	Kev A	ssumptions	113		
	7.4	ANUF	LOOD Building Damages Assessment	114		
		7.4.1	ANUFLOOD Stage-Damage Curves	114		
		7.4.3	ANUFLOOD Building Damages Summary	116		
	7.5	Rapid	Appraisal Method (RAM) Damages Assessment	116		
		7.5.1	RAM Building Damages	116		
		7.5.2	RAM Agricultural Damages	117		
		7.5.3	RAM Road Infrastructure Damages	118		
	7.6	Average Annual Damages		119		
	7.7	Summ	ary	120		
8	Floo	od Mitig	gation Assessment	122		
	8.1	Flood	- Mitigation Overview	122		
		8.1.1	Background	122		
		8.1.2	Key Issues	122		
		8.1.3	Management Objectives	123		
	8.2	Manag	gement Option Screening	123		
		8.2.1	Identification of Management Strategies	123		

	8.2.2	Screening Process	124
8.3	Structu	ural Management Scheme Assessment	141
	8.3.1	Structural Management Schemes	141
	8.3.2	Hydraulic Assessment and Flood Impact Mapping	141
	8.3.3	Benefit Cost Ratio	142
	8.3.4	Cost Estimates	143
8.4	Schem	ne 1: Vegetation Removal	144
	8.4.1	Description of Works	144
	8.4.2	Flood Impacts	144
	8.4.3	Benefit Cost Ratio	148
	8.4.4	Advantages and Disadvantages	148
8.5	Schem	ne 2: Navarre Town Levee	149
	8.5.1	Description of Works	149
	8.5.2	Flood Impacts	149
	8.5.3	Benefit Cost Ratio	151
	8.5.4	Advantages and Disadvantages	151
8.6	Schem	ne 3: Whole of Catchment Access	152
	8.6.1	Description of Works	152
	8.6.2	Flood Impacts	152
	8.6.3	Benefit Cost Ratio	154
	8.6.4	Advantages and Disadvantages	154
8.7	Conclu	isions	154
Floo	od Warı	ning Systems	155
9.1	Aim an	nd Function	155
9.2	Limitat	ions of Flood Warning Systems	155
9.3	The To	otal Flood Warning System Concept	157
9.4	Total F	Flood Warning System Building Blocks	157
9.5	The Ta	ask for the Upper Wimmera Catchment	158
	9.5.1	Introduction	158
	9.5.2	Existing Flood Warning System	161
	9.5.3	Flood Risk in the Upper Wimmera Catchment	164
	9.5.4	Data Collection and Collation	165
	9.5.4.1	Introduction	165
	9.5.4.2	Event Reporting Radio Telemetry System	166
	9.5.4.3	Possible Additional Data Collection Sites	166
	9.5.4.4	Manual Data Collection and Alerting	168
	9.5.5	Flood Detection and Prediction	168

9

		9.5.6	Interpretation	169
		9.5.7	Message Construction and Dissemination	169
		9.5.7.1	Alerting and Notification	169
		9.5.7.2	Community Involvement	170
		9.5.8	Response	170
		9.5.9	Community Flood Awareness	171
	9.6	A Solu	tion for the Upper Wimmera Catchment	172
	9.7	Sugge	sted Actions Aimed At Improving the TFWS	178
	9.8	Estima	ated costs for the FFWS	181
10	Floo	dplain	Management	186
	10.1	Flood	Hazard	186
	10.2	Planni	ng Controls	186
	10.3	Declar	ed Flood Levels	187
	10.4	Flood	Response Plan	187
11	Sum	mary	and Recommendations	192
12	Refe	rence	s	193
Арр	endix	A I	Existing Case – Depth Mapping	A-1
Арр	endix	BI	Existing Case – Hazard Mapping	B-1
Арр	endix	C I	Existing Case – Velocity Mapping	C-1
Арр	endix	DI	Mitigation Scenarios – Flood Impact Assessment	D-1
Арр	endix	EI	Detailed Mitigation Scheme Costings	E-1
Арр	endix	FI	Flood Warning Services Provided by BOM	F-1

List of Figures

Study Area and Town Map	ii
Existing Conditions 1% AEP Peak Flood Depth	vi
Locality Map	5
Study Area	6
Drainage Structures	9
Wattle Creek at Navarre Stream Gauge	16
Mount Cole Creek at Crowlands Stream Gauge	16
Wimmera River at Eversley Stream Gauge	17
Wimmera River at Glynwylln Stream Gauge	17
Flow Duration Curve - Wattle Creek at Navarre	20
Flow Duration Curve - Mount Cole Creek at Crowlands	20
	Study Area and Town MapExisting Conditions 1% AEP Peak Flood DepthLocality MapStudy AreaDrainage StructuresWattle Creek at Navarre Stream GaugeMount Cole Creek at Crowlands Stream GaugeWimmera River at Eversley Stream GaugeWimmera River at Glynwylln Stream GaugeFlow Duration Curve - Wattle Creek at NavarreFlow Duration Curve - Mount Cole Creek at Crowlands

Figure 3-7	Flow Duration Curve - Wimmera River at Everslev	20
Figure 3-8	Flow Duration Curve - Wimmera River at Glynwylln	21
Figure 3-9	Mean Daily vs Instantaneous Flow - Wimmera River at Eversley	22
Figure 3-10	Flow Duration Curve - Wimmera River at Glynwylln	23
Figure 3-11	FFA Results: Wattle Creek at Navarre - Log Normal Fitting	27
Figure 3-12	FFA Results: Wattle Creek at Navarre - LP3 Fitting	28
Figure 3-13	FFA Results: Wattle Creek at Navarre - Gumbel Fitting	28
Figure 3-14	FFA Results: Wattle Creek at Navarre - GEV Fitting	29
Figure 3-15	FFA Results: Wattle Creek at Navarre - Generalised Pareto Fitting	30
Figure 3-16	FFA Results: Mount Cole Creek at Crowlands - Log Normal Fitting	30
Figure 3-17	FFA Results: Mount Cole Creek at Crowlands - LP3 Fitting	31
Figure 3-18	FFA Results: Mount Cole Creek at Crowlands - Gumbel Fitting	31
Figure 3-19	FFA Results: Mount Cole Creek at Crowlands - GEV Fitting	32
Figure 3-20	FFA Results: Mount Cole Creek at Crowlands - Generalised Pareto Fitting	32
Figure 3-21	FFA Results: Wimmera River at Eversley - Log Normal Fitting	33
Figure 3-22	FFA Results: Wimmera River at Eversley - LP3 Fitting	34
Figure 3-23	FFA Results: Wimmera River at Eversley - Gumbel Fitting	34
Figure 3-24	FFA Results: Wimmera River at Eversley - GEV Fitting	35
Figure 3-25	FFA Results: Wimmera River at Eversley - Generalised Pareto Fitting	36
Figure 3-26	FFA Results: Wimmera River at Glynwylln - Log Normal Fitting	36
Figure 3-27	FFA Results: Wimmera River at Glynwylln - LP3 Fitting	37
Figure 3-28	FFA Results: Wimmera River at Glynwylln - Gumbel Fitting	37
Figure 3-29	FFA Results: Wimmera River at Glynwylln - GEV Fitting	38
Figure 3-30	FFA Results: Wimmera River at Glynwylln - Generalised Pareto Fitting	38
Figure 3-31	RORB Model Layout	42
Figure 3-32	Stream Gauge and Pluviograph Station Locations	45
Figure 3-33	Stream Gauge and Rainfall Station Locations	46
Figure 3-34	Calibrated Hydrograph Comparison for January 2011	51
Figure 3-35	Calibrated Hydrograph Comparison for September 2010	54
Figure 3-36	Validated Hydrograph Comparison for December 2010	56
Figure 3-37	72 Hour Design Hydrographs	62
Figure 4-1	TUFLOW Model Layout	69
Figure 4-2	Manning's 'n' Roughness Coefficient Distribution	70
Figure 4-3	September 2010 Calibration Event Flow Rate Comparison	73
Figure 4-4	Distribution of Surveyed Flood Marks	74

Figure 4-5	Calibration 2010 Validation Event Flow Comparison	76
Figure 4-6	September 2010 Calibration Event Peak Flood Level Difference – Navarre Township	77
Figure 4-7	September 2010 Calibration Event Peak Flood Level Difference – Landsborough Township	78
Figure 4-8	September 2010 Calibration Event Peak Flood Level Difference – Glynwylln Stream Gauge	79
Figure 4-9	January 2011 Verification Flow Rate Comparison	80
Figure 4-10	January 2011 Verification Event Level Comparison	82
Figure 4-11	January 2011 Verification Event Peak Flood Level Difference - Surveyed - Navarre	83
Figure 4-12	January 2011 Verification Event Peak Flood Level Difference - Anecdotal - Navarre	85
Figure 6-1	Existing Conditions 1% AEP Peak Flood Depth – Catchment	94
Figure 6-2	Existing Conditions 1% AEP Peak Flood Depth - Navarre	95
Figure 6-3	Existing Conditions 1% AEP Peak Flood Depth - Landsborough	96
Figure 6-4	Existing Conditions 1% AEP Peak Flood Depth - Elmhurst	97
Figure 6-5	Existing Conditions 1% AEP Flood Hazard – Catchment	98
Figure 6-6	Existing Conditions 1% AEP Flood Hazard - Navarre	99
Figure 6-7	Existing Conditions 1% AEP Flood Hazard - Landsborough	100
Figure 6-8	Existing Conditions 1% AEP Flood Hazard - Elmhurst	101
Figure 6-9	Existing Conditions 1% AEP Peak Flood Velocity – Catchment	102
Figure 6-10	Existing Conditions 1% AEP Peak Flood Velocity - Navarre	103
Figure 6-11	Existing Conditions 1% AEP Peak Flood Velocity - Landsborough	104
Figure 6-12	Existing Conditions 1% AEP Peak Flood Velocity - Elmhurst	105
Figure 6-13	Increased Rainfall Intensity 1% AEP Peak Flood Depth – Catchment	107
Figure 6-14	Increased Rainfall Sensitivity 1% AEP Peak Flood Depth - Navarre	108
Figure 6-15	Increased Rainfall Sensitivity 1% AEP Peak Flood Depth - Landsborough	109
Figure 6-16	Existing Conditions 1% AEP Peak Flood Depth - Elmhurst	110
Figure 7-1	Types and Categorisation of Flood Damage Costs - Reproduced from <i>Rapid Appraisal Method (RAM) For Floodplain Management</i> (NRE 2000).	112
Figure 7-2	ANUFLOOD Stage-Damage Curves	115
Figure 7-3	Existing Condition Probability-Damages Curve	120
Figure 8-1	Scheme 1 Impacts on 1% AEP Peak Flood Levels – Landsborough	146
Figure 8-2	Scheme 1 Impacts on 1% AEP Peak Flood Levels – Navarre	147
Figure 8-3	Scheme 2 Impacts on 1% AEP Peak Flood Levels	150
Figure 8-4	Scheme 3 Impacts on 1% AEP Peak Flood Levels	153

Figure 9-1	Upper Wimmera Study Catchment with Townships and Stream Gauging Sites	160
Figure 9-2	Rainfall and river station in the Upper Wimmera catchment supporting flood warning to Glenorchy (extracted from BoM map)	163
Figure 10-1	Proposed Planning Scheme - Catchment	188
Figure 10-2	Proposed Planning Scheme - Navarre	189
Figure 10-3	Proposed Planning Scheme - Landsborough	190
Figure 10-4	Proposed Planning Scheme - Elmhurst	191

List of Tables

Table 3-1	Stream Flow Gauges in the Upper Wimmera Catchment	15
Table 3-2	Stream Gauge Rating Curve Heights	18
Table 3-3	Censored Data Values	21
Table 3-4	Annual Maximum Series: Wattle Creek at Navarre	24
Table 3-5	Annual Maximum Series: Mount Cole Creek at Crowlands	24
Table 3-6	Annual Maximum Series: Wimmera River at Eversley	25
Table 3-7	Annual Maximum Series: Wimmera River at Glynwylln	26
Table 3-8	Wattle Creek at Navarre: Flood Frequency Analysis Results	30
Table 3-9	Mount Cole Creek at Crowlands: Flood Frequency Analysis Results	33
Table 3-10	Wimmera River at Eversley: Flood Frequency Analysis Results	36
Table 3-11	Wimmera River at Glynwylln: Flood Frequency Analysis Results	39
Table 3-12	Fraction Impervious Values	41
Table 3-13	Calibration and Validation Rainfall Event Rainfall Summary	48
Table 3-14	Calibrated Parameters and Values for January 2011	49
Table 3-15	Calibrated Parameters and Values for September 2010	52
Table 3-16	Validation Parameters and Values for December 2010	55
Table 3-17	RORB Parameters	58
Table 3-18	IFD Parameters	59
Table 3-19	GSAM Estimate of PMP Rainfall Depth	60
Table 3-20	RORB Design Event – Model Losses	60
Table 3-21	RORB Design Event – Critical Duration	61
Table 3-22	RORB Design Peak Flow Values	61
Table 3-23	Adopted RORB design parameters	63
Table 3-24	Wimmera River at Glynwylln: Comparison of FFA and Design Flow	63
Table 4-1	2D Domain Manning's 'n' Coefficients	65

Table 4-2	September 2010 Calibration Level Comparison	73
Table 4-3	January 2011 Verification Level Comparison	80
Table 4-4	January 2011 Verification – Anecdotal Flood Level Comparison	86
Table 4-5	September 2010 Sensitivity Analysis Comparison	89
Table 4-6	January 2011 Sensitivity Analysis Comparison	89
Table 7-1	Existing Conditions ANUFLOOD Building Damages Summary	116
Table 7-2	RAM Building Potential Damage Values	117
Table 7-3	Existing Conditions RAM Building Damages Summary	117
Table 7-4	RAM Agricultural Damage Values	117
Table 7-5	Existing Conditions RAM Agricultural Damages Summary	118
Table 7-6	RAM Road Infrastructure Damage Values	118
Table 7-7	Existing Conditions RAM Road Infrastructure Damages Summary	119
Table 7-8	Existing Conditions Damages Summary	120
Table 8-1	Manage Options Considered	125
Table 8-2	Present Value of Annual Benefits	143
Table 8-3	Scheme 1 – Number of Flooded Properties	145
Table 8-4	Scheme 1 BCR Summary	148
Table 8-5	Advantages and Disadvantages of Scheme 1	148
Table 8-6	Scheme 2 – Number of Flooded Properties	149
Table 8-7	Scheme 2 BCR Summary	151
Table 8-8	Advantages and Disadvantages of Scheme 2	151
Table 8-9	Scheme 3 – Number of Flooded Properties	152
Table 8-10	Scheme 3 BCR Summary	154
Table 8-11	Advantages and Disadvantages of Scheme 3	154
Table 9-1	The existing data collection network for the Wimmera catchment upstream of Glenorchy	162
Table 9-2	Flash Flood Warning System Building Blocks and Possible Solution for the Upper Wimmera catchment with due regard for the EMMV, Commonwealth-State arrangements for flood warning service provision (BoM, 1987; VFWCC, 2001;EMA, 2009)	173
Table 9-3	Estimated cost associated with implementation of the Flash Flood Warning System	181

